Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Philip J. Cox* and Nicola M.

 FooteSchool of Pharmacy, The Robert Gordon University, Schoolhill, Aberdeen AB10 1FR, Scotland

Correspondence e-mail: p.j.cox@rgu.ac.uk

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.067$
$w R$ factor $=0.181$
Data-to-parameter ratio $=19.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Hydrogen-bonded molecular chains in

 (2E)-butane-2,3-dione oxime with $Z^{\prime}=3$The title compound (also known as diacetyl monoxime), $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{NO}_{2}$, crystallizes with three molecules in the asymmetric unit and forms continuous hydrogen-bonded molecular chains.

Comment

The simple title molecule, (I), has been frequently used for the determination of urea concentrations in milk, plasma and urine (e.g. Marsh et al., 1957; Butler et al., 1981). It also affects a number of biological mechanisms, including muscle contraction, ionic current flow and synaptic transmission (e.g. Sellin \& McArdle, 1994).

(I)

As with 2,3-butanedione (Eriks et al., 1983) and 2,5-di-acetyl-3,4-diazahexa-2,4-diene (Korber et al., 1987), the $\mathrm{CH}_{3}-$ $\mathrm{Csp} p^{2}-\mathrm{Csp}^{2}-\mathrm{CH}_{3}$ conformation in the molecule is trans. Unfortunately, the conformational isomer with the cis arrangement is also known as diacetyl monoxime (e.g. Moszner et al., 1997).

Figure 1
The atomic arrangement in molecule A of (I). Displacement ellipsoids are shown at the 50% probability level.

Received 23 April 2002
Accepted 29 April 2002
Online 11 May 2002

Figure 2
Molecules in a hydrogen-bonded chain. From left to right: molecule C (coordinates transformed by $1 / 2+x, 1 / 2-y, 1 / 2-z$), molecule A, molecule B, molecule C (coordinates transformed by $1 / 2-x, 1 / 2-y, 1 / 2+z$).

The three molecules $(A, B$ and $C)$ of the asymmetric unit have similar geometries and there are no significant differences between equivalent bond lengths and bond angles. The largest discrepancy among all the equivalent torsions angles (essentially cis or trans) is $7.0(7)^{\circ}$ (Table 1).

Each molecule is hydrogen bonded to two other molecules, to form a continuous chain, as shown in Fig. 2. In the unit cell, these chains run parallel in the $a c$ direction and are stacked along the b axis (Fig. 3). Differences in the strengths of the hydrogen bonds are evident as variations in intermolecular separations and linearity (Table 2) are present.

Experimental

Diacetyl monoxime (97\%) was purchased from Aldrich (CAS 57-716) and was recrystallized from ethanol.

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{NO}_{2}$
$M_{r}=101.11$
Monoclinic, $P 2_{1} / n$
$a=11.5354$ (7) \AA
$b=12.7225$ (12) \AA
$c=11.8884$ (10) \AA
$\beta=116.106$ (3) ${ }^{\circ}$
$V=1566.7$ (2) \AA^{3}
$V=156$
$Z=12$

$$
\begin{aligned}
& D_{x}=1.286 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 20830 \\
& \quad \text { reflections } \\
& \theta=1.0-30.5^{\circ} \\
& \mu=0.10 \mathrm{~mm}^{-1} \\
& T=120(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.10 \times 0.10 \times 0.05 \mathrm{~mm}
\end{aligned}
$$

Figure 3
Packing diagram, showing chains stacked along the b axis and running parallel in the $a c$ direction.

Data collection

Enraf-Nonius KappaCCD areadetector diffractometer φ and ω scans
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
$T_{\text {min }}=0.990, T_{\text {max }}=0.995$
19544 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.067$
$w R\left(F^{2}\right)=0.181$
$S=0.94$
3745 reflections
190 parameters

3745 independent reflections
1343 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.187$
$\theta_{\text {max }}=30.2^{\circ}$
$h=-14 \rightarrow 15$
$k=-16 \rightarrow 15$
$l=-16 \rightarrow 15$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0693 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.32 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.29 \mathrm{e}^{\AA^{-3}}$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{O} 1 A-\mathrm{N} 1 A$	$1.392(3)$	$\mathrm{C} 1 A-\mathrm{C} 2 A$	$1.494(5)$
$\mathrm{O} 2 A-\mathrm{C} 3 A$	$1.230(3)$	$\mathrm{C} 2 A-\mathrm{C} 3 A$	$1.481(5)$
$\mathrm{N} 1 A-\mathrm{C} 2 A$	$1.284(4)$	$\mathrm{C} 3 A-\mathrm{C} 4 A$	$1.496(5)$
$\mathrm{C} 2 A-\mathrm{N} 1 A-\mathrm{O} 1 A$	$112.6(3)$	$\mathrm{O} 2 A-\mathrm{C} 3 A-\mathrm{C} 2 A$	$119.5(3)$
$\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 2 A-\mathrm{C} 3 A$	$114.4(3)$	$\mathrm{O} 2 A-\mathrm{C} 3 A-\mathrm{C} 4 A$	$121.1(3)$
$\mathrm{N} 1 A-\mathrm{C} 2 A-\mathrm{C} 1 A$	$126.9(3)$	$\mathrm{C} 2 A-\mathrm{C} 3 A-\mathrm{C} 4 A$	$119.3(3)$
$\mathrm{C} 3 A-\mathrm{C} 2 A-\mathrm{C} 1 A$	$118.7(3)$		
			$178.4(3)$
$\mathrm{C} 1 A-\mathrm{C} 2 A-\mathrm{C} 3 A-\mathrm{C} 4 A$	$-180.0(3)$	$\mathrm{C} 1 C-\mathrm{C} 2 C-\mathrm{C} 3 C-\mathrm{C} 4 C$	
$\mathrm{C} 1 B-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 B-\mathrm{C} 4 B$	$-175.4(4)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 B-\mathrm{H} 1 B \cdots \mathrm{O} 2 A$	0.84	1.90	$2.727(4)$	166
$\mathrm{O} 1 A-\mathrm{H} 1 A \cdots \mathrm{O} 2 C^{\mathrm{i}}$	0.84	1.87	$2.699(4)$	168
$\mathrm{O}_{1} C-\mathrm{H} 1 C \cdots \mathrm{O} 2 B^{\mathrm{i}}$	0.84	1.84	$2.677(5)$	178
Symmetry code: (i) $\frac{1}{2}+x, \frac{1}{2}-y, z-\frac{1}{2}$.				

Refinement was affected by the limited quality and quantity of the data. The diffraction intensities were very weak from the small crystal with three independent molecules in the asymmetric unit, despite the use of a rotating-anode X-ray source, and the crystal mosaic spread was found to be unusually high $\left(>1.3^{\circ}\right)$. The H atoms were initially placed in calculated positions and thereafter made to ride on their attached atoms, each with isotropic displacement parameter $1.2 U_{\text {eq }}$ of the parent atom.

Data collection: DENZO (Otwinowski \& Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: $D E N Z O$ and COLLECT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97-2 (Sheldrick, 1998); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2001).

We thank the EPSRC for use of the National Crystallographic Service, at Southampton University (X-ray data collection), and for the use of the Chemical Database Service at Daresbury (Fletcher et al., 1996).

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.
Butler, A. R., Hussain, I. \& Leitch, E. (1981). Clin. Chim. Acta, 112, 357-360.
Eriks, K., Hayden, T. D., Yang, S. H. \& Chan, I. Y. (1983). J. Am. Chem. Soc. 105, 3940-3942.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Fletcher, D. A., McMeeking, R. F. \& Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746-749.

Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Korber, G., Rademacher, P. \& Boese, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. 761-765.
Marsh, W. H., Fingerhut, B. \& Kirsch, E. (1957). Am. J. Clin. Path. 28, 681688.

Moszner, M., Glowiak, T., Kubiak, M., Ziólkowski, J. J., Costa, G. \& Tavagnacco, C. (1997). Polyhedron, 16, 307-313.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.

Sellin, L. C. \& McArdle, J. J. (1994). Pharmacol. Toxicol. 74, 305-313.
Sheldrick, G. M. (1998). SHELXL97-2. University of Göttingen, Germany.
Spek, A. L. (2001). PLATON. Version 101201. University of Utrecht, The Netherlands.

